import angr
import monkeyhex # this will format numerical results in hexadecimal
#Load binary
proj = angr.Project('/bin/true')
#BASIC BINARY DATA
proj.arch #Get arch "<Arch AMD64 (LE)>"
proj.arch.name #'AMD64'
proj.arch.memory_endness #'Iend_LE'
proj.entry #Get entrypoint "0x4023c0"
proj.filename #Get filename "/bin/true"
#There are specific options to load binaries
#Usually you won't need to use them but you could
angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch': 'i386'}, lib_opts={'libc.so.6': {'backend': 'elf'}})
strcmp = proj.loader.find_symbol('strcmp') #<Symbol "strcmp" in libc.so.6 at 0x1089cd0>
strcmp.name #'strcmp'
strcmp.owne #<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>
strcmp.rebased_addr #0x1089cd0
strcmp.linked_addr #0x89cd0
strcmp.relative_addr #0x89cd0
strcmp.is_export #True, as 'strcmp' is a function exported by libc
#Get strcmp from the main object
main_strcmp = proj.loader.main_object.get_symbol('strcmp')
main_strcmp.is_export #False
main_strcmp.is_import #True
main_strcmp.resolvedby #<Symbol "strcmp" in libc.so.6 at 0x1089cd0>
Blocks
#Blocks
block = proj.factory.block(proj.entry) #Get the block of the entrypoint fo the binary
block.pp() #Print disassembly of the block
block.instructions #"0xb" Get number of instructions
block.instruction_addrs #Get instructions addresses "[0x401670, 0x401672, 0x401675, 0x401676, 0x401679, 0x40167d, 0x40167e, 0x40167f, 0x401686, 0x40168d, 0x401694]"
Dynamic Analysis
Simulation Manager, States
#Live States
#This is useful to modify content in a live analysis
state = proj.factory.entry_state()
state.regs.rip #Get the RIP
state.mem[proj.entry].int.resolved #Resolve as a C int (BV)
state.mem[proj.entry].int.concreteved #Resolve as python int
state.regs.rsi = state.solver.BVV(3, 64) #Modify RIP
state.mem[0x1000].long = 4 #Modify mem
#Other States
project.factory.entry_state()
project.factory.blank_state() #Most of its data left uninitialized
project.factory.full_init_statetate() #Execute through any initializers that need to be run before the main binary's entry point
project.factory.call_state() #Ready to execute a given function.
#Simulation manager
#The simulation manager stores all the states across the execution of the binary
simgr = proj.factory.simulation_manager(state) #Start
simgr.step() #Execute one step
simgr.active[0].regs.rip #Get RIP from the last state
Calling functions
You can pass a list of arguments through args and a dictionary of environment variables through env into entry_state and full_init_state. The values in these structures can be strings or bitvectors, and will be serialized into the state as the arguments and environment to the simulated execution. The default args is an empty list, so if the program you're analyzing expects to find at least an argv[0], you should always provide that!
If you'd like to have argc be symbolic, you can pass a symbolic bitvector as argc to the entry_state and full_init_state constructors. Be careful, though: if you do this, you should also add a constraint to the resulting state that your value for argc cannot be larger than the number of args you passed into args.
To use the call state, you should call it with .call_state(addr, arg1, arg2, ...), where addr is the address of the function you want to call and argN is the Nth argument to that function, either as a python integer, string, or array, or a bitvector. If you want to have memory allocated and actually pass in a pointer to an object, you should wrap it in an PointerWrapper, i.e. angr.PointerWrapper("point to me!"). The results of this API can be a little unpredictable, but we're working on it.
BitVectors
#BitVectors
state = proj.factory.entry_state()
bv = state.solver.BVV(0x1234, 32) #Create BV of 32bits with the value "0x1234"
state.solver.eval(bv) #Convert BV to python int
bv.zero_extend(30) #Will add 30 zeros on the left of the bitvector
bv.sign_extend(30) #Will add 30 zeros or ones on the left of the BV extending the sign
Symbolic BitVectors & Constraints
x = state.solver.BVS("x", 64) #Symbolic variable BV of length 64
y = state.solver.BVS("y", 64)
#Symbolic oprations
tree = (x + 1) / (y + 2)
tree #<BV64 (x_9_64 + 0x1) / (y_10_64 + 0x2)>
tree.op #'__floordiv__' Access last operation
tree.args #(<BV64 x_9_64 + 0x1>, <BV64 y_10_64 + 0x2>)
tree.args[0].op #'__add__' Access of dirst arg
tree.args[0].args #(<BV64 x_9_64>, <BV64 0x1>)
tree.args[0].args[1].op #'BVV'
tree.args[0].args[1].args #(1, 64)
#Symbolic constraints solver
state = proj.factory.entry_state() #Get a fresh state without constraints
input = state.solver.BVS('input', 64)
operation = (((input + 4) * 3) >> 1) + input
output = 200
state.solver.add(operation == output)
state.solver.eval(input) #0x3333333333333381
state.solver.add(input < 2**32)
state.satisfiable() #False
#Solver solutions
solver.eval(expression) #one possible solution
solver.eval_one(expression) #solution to the given expression, or throw an error if more than one solution is possible.
solver.eval_upto(expression, n) #n solutions to the given expression, returning fewer than n if fewer than n are possible.
solver.eval_atleast(expression, n) #n solutions to the given expression, throwing an error if fewer than n are possible.
solver.eval_exact(expression, n) #n solutions to the given expression, throwing an error if fewer or more than are possible.
solver.min(expression) #minimum possible solution to the given expression.
solver.max(expression) #maximum possible solution to the given expression.
Hooking
>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS
>>> proj.hook(0x10000, stub_func()) # hook with an instance of the class
>>> proj.is_hooked(0x10000) # these functions should be pretty self-explanitory
True
>>> proj.hooked_by(0x10000)
<ReturnUnconstrained>
>>> proj.unhook(0x10000)
>>> @proj.hook(0x20000, length=5)
... def my_hook(state):
... state.regs.rax = 1
>>> proj.is_hooked(0x20000)
True
Furthermore, you can use proj.hook_symbol(name, hook), providing the name of a symbol as the first argument, to hook the address where the symbol lives